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Chapter 1

An Introduction to The Slacker’s
Guide to Physics

The idea behind this series is basically encoded in the Slacker’s Oath: “I shall
always take the path of least action whenever possible.” In other words, this book
is the text-embodiment of the “least action” - least amount of time spent, energy
wasted, etc. - one has to take towards acing this particular academic subject.

I believe that the method of learning promoted by this series - that one should
learn certain highly procedure- based methods before attempting to “understand”
the material - would allow the following:

• A heightened ability to tackle the traditional problems that fetter many
students

• Learning that is directly related to acing the bulk of (most) examinations

• Intimate relationships with some cute (and possibly sexy) equations

Each volume will begin from near-scratch. For example, the E and M volume
assumes only that you’ve taken (or know the bare basics of) single-variable calcu-
lus. Although it is highly recommended that students take multivariable calculus
before E and M, there are only a few dragons that can’t be slayed without. The
Math-in-a-Nutshell section should be a sufficient excuse to not let math screw
over your physics grade (aside from arithmetic errors and that sort). Also, in
case you find me too pendantic in some sections, there will occassionally be “too
lazy to read the previous section” chapters that succinctly summarize the main
details.1

Although the word “slacker” implies that you’d spend your term doing more
playing than studying, I cannot promise you an A in your course if you read

1Please try to read as much as you can, though. And send me comments (yosun@nusoy.com)
whenever I’m unclear or anything, as this is a pre-print. If you want more incentive, I guess
I’ll put you on my credits page if your comments are good enough. =P
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only just this. Reading this will provide you with an alternate and possibly more
illuminating method of preparing for examinations and quizzes. However, be-
cause this text is focused more on quantitative problems, rather than qualitative
methods (although many qualitative characteristics are often derived, or can be
taken, from some fundamental quantitative bases), it is a good idea to try to pay
attention in lectures and all that (and maybe even occassionally read your main
textbook, say on the toilet, perhaps).

–Your Slacker Guru



Chapter 2

Mathematics (of the very helpful
kind) in a Nutshell

2.1 Flavors of Derivatives

Once upon a time in algebra, you learned that the slope was defined as rise over
run. If you’re given the equation of a straight line, say, y = 3x + 4, you were
supposed to use the formula y = mx+ b, match coefficients, and find that m = 3,
therefore, the slope is 3 (because m is defined as the slope). If you were given an
equation of a decent parabola, say, y = x2 + 3x + 4, and asked to find the slope,
you were supposed to shrivel up into a fetal shape and cry.

Back then, you weren’t supposed to know that there were two ways to find
the slope. There was just that one formula, and it only worked for straight lines.
Only that and nothing else.

So anyway, along comes calculus and the concept of the derivative, a general
way to find slopes. By using a simple power rule, you can easily find the slope of
parabolas, cubics, 4-power thingies, and so much more. But, apparently, curves
have changing slopes. Thus, you needed the idea of the “instantaneous slope.”
That’s actually precisely why derivatives are useful. They generate an equation
that defines the slope of the original line/curve at any point.

This section of the book will prep you up on the derivatives required for your
E and M course. It’ll start with a brief review of partial derivatives, and then
it’ll plunge into the del operator, which is more or less a shortcut for taking
derivatives in three dimensions. DO NOT LET FEAR STOP YOU!!! Chances
are, much of the del stuff will become more clear as you proceed onwards with
the book.

It’s best to get rid of your calculus phobia now, before it’s too late. Your
physics exams and quizzes will very likely involve some bit of calculus. That’s
not too bad, basically because you wouldn’t want to do it without calculus,
anyway. (There are certain things better done in calculus than via algebra.)
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2.1.1 Partial Derivatives: The Art of Ignoring

Let’s start with derivatives. Nothing nasty like arc-trig. Rather, let’s play with
those yummy power rules.

Recall from Calculus (or The Slacker’s Guide to Calculus: Single-Variable)
that:

d
dx

x2 = 2x or in general: d
dx

xn = nx(n−1)

Basically, “partial derivatives” are extensions of the theory of derivatives from
1-Dimensional calc into multiple dimensions. (We’ll focus mostly on 2D or 3D in
this text.) The trick is that you differentiate only with respect to the variable indi-
cated by the partial derivative (the curly d - think of it as a faux-multidimensional
d) and you ignore the other variables. Thus:

∂
∂x

3x5y69z24 = 15x4y69z24

Notice that the derivative is taken with respect to x, thus only the x term in
the equation above is “derivatized” - everything else, all those ugly powers of y
and z stay constant. All the rules for derivatives from the 1-D calc course you
took last term, or some other time in your dark past, work for partials. (Thus,
you can still have those wacky bashes with the ol’ product rules, chains, and even
the one and only: ( hi

ho
)′ = hodhi−hidho

hoho
.)

Q. But, O Great Slacker Guru, what does this mean? I mean, it’s
fun taking mindless power-rule derivatives and all, but... A. When you
take something with respect to x, while ignoring the y and z variables (compo-
nents, actually), for example, that means you’re only finding the slope of the
function in its x component. The derivative with respect for x would (in general)
not apply to the slope for the y and z components.

2.1.2 The Del “∇” Operator

The Del operator is a group of partial derivatives. Although it might look scary,
it’s really just a shorthand for stating derivatives with respect to different co-
ordinate systems. Different coordinate systems are really very cool1; they allow
you to specify your position in an objective unambiguous way. Your choice of
coordinate system might make certain problems way easier, as we shall see quite
soon.

Let’s take a look at the Cartesian coordinate system first. It’s the basic x-y-z
thing you’ve known for a while.

Suppose you want to take derivatives of a function f(x, y, z) with respect to
x, y, and z. You can do this two ways:

1see “Moving the Origin”
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• The long way: ( ∂
∂x

x̂ + ∂
∂y

ŷ + ∂
∂z

ẑ ) ?f(x, y, z)

• The “del2” (∇) way: Define ∇ = ∂
∂x

x̂ + ∂
∂y

ŷ + ∂
∂z

ẑ

Thus, you can state everything in the ”long way” as: ∇ ? f(x, y, z)

Notice that I’ve placed a ? there, which I’ll get back to. And then, notice
that I’ve introduced three unit vectors3 x̂, ŷ, and ẑ. (They usually refer to these
unit vectors as î, ĵ, and k̂, respectively, but it’s the same meaning, just different
”names.”) These unit vectors are mutually perpendicular to each other (they
form the axes). They are therefore linearly independent bases4 that span all of
3-space5; from a linear combination6 of these, you can construct any other vector
(in 3-space).

Read the footnotes to the last paragraph. Then, memorize the last two sen-
tences. They’re good for impressing certain people at cocktail parties. Seriously,
you should try this.

Anyway, I put a ? there because of those unit vectors. Vectors are values that
contain both direction and length. In the case of unit vectors, the lengths are
all unitary, i.e., 1. It is only the direction that is of quintessential significance
in these unit vectors. Vectors have direction (aside from the trivial sense of
ordinary numbers that are just negative or positive) because they have multiple
components.

The cartesian vector has three components: the x, y, and z components. Dif-
ferent mixes of values yield different vectors. Multiplying two vectors in different
ways also yield different results. Sometimes vector multiplication commute, and
sometimes, they do not.

There are three ways to multiply vectors:

• The first way involves only one vector. You multiply a scalar α and a vector
~A and you get α ~A

• The second way is called the “dot · product.” (AKA the “scalar product”
- the end result of multiplication of these two vectors yields a scalar) You

multiply the vectors ~A(a, b, c) and ~B(d, e, f), in this particular way, to get

their dot product: ~A · ~B = (ad + be + cf) =‖ ~A ‖‖ ~B ‖ cos θ. You get a

2Del is not a vector. It acts on vectors and numbers and “transforms” them according to
its definition as stated above.

3Unit vectors will be denoted in bold face with hats. Regular vectors will just have arrows
on top of them.

4They are independent in that you need only a linear combination of - say - the x̂ and ŷ,
unit vectors to uniquely describe any vector in the xy-plane.

53-space is short for 3D-space
6A linear combination is just a bunch of vectors each multiplied by some scalar ”ordinary”

number.
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scalar from the dot product of two vectors (after multiplying the Ax
7 with

Bx and Ay with By, etc.).

• The third way is called the “cross × product.” (AKA the “vector product”
- the end result of multiplication of these two vectors yields a vector.) You

multiply the vectors ~A(a, b, c) and ~B(d, e, f) to get ~A × ~B = det(û, ~A, ~B)
where û represents the unit vectors. Thus the cross product of A and
B is mutually perpendicular to both and can be calculated in Cartesian
coordinates as this:

~A× ~B =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
a b c
d e f

∣∣∣∣∣∣∣ = x̂(bf − ce)− ŷ(af − cd) + ẑ(ae− bd)

where the magnitude of this vector is equal to ‖ ~A ‖‖ ~B ‖ sin θ

I put the unit vectors in front of the values because a scalar multipled by a
vector commutes, and also, you might find it easier in your calculations in
the future to write vector products as such. The ‖ ”cages” around ~A and
~B make scalars out of the two vectors like this: (eg) ‖ ~A ‖=

√
a2 + b2 + c2.

Theta θ is the angle between the vectors ~A and ~B.

Back to our old ∇. The ∇ isn’t really a vector, but it has components.
Del doesn’t mean anything by itself, but, like vectors, it does not necessarily
commute, hence why i had a ? earlier. So... you can multiply it with another
vector in similar ways:

• grad f = ∇f ... Del isn’t really a scalar, but f is a scalar, in this case.
Grad makes a vector out of f . Thus: Suppose f = x2 + xy3z4. The grad
operation would transform that scalar function into a vector function. A
once direction-less ”lost” function would be direction-ized! It would do so
like this: ∇f = ∇(x2 + xy3z4) = x̂(2x + y3z4) + ŷ(3y2xz4) + ẑ(4z3xy3).
Conceptual Meaning: The gradient ∇f points in the direction of maxi-
mum increase of the function f .

• div f = ∇ ·~f ... The dot product of del and a vector (del “dot” ~f) yields a

scalar. Suppose ~A =< x2y, xyz, x3yz4 >. Then∇· ~A = (2xy+xz+4z3x3y).
Conceptual Meaning: The divergence is a measure of
how much a vector “spreads out” from a particular point.

7where Ax represents the x component of A, rather than the derivative of A with respect to
x. I will always specifically write d

dx , etc.
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• curl f = ∇ × ~f ... The cross product of del and a vector (del “cross” ~f)

yields a vector. Suppose ~A =< a, b, c >, where a, b, and c are functions of
x, y, and z.

∇× ~A =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

a b c

∣∣∣∣∣∣∣ = x̂(
∂c

∂y
− ∂b

∂z
)− ŷ(

∂c

∂x
− ∂a

∂c
) + ẑ(

∂b

∂x
− ∂a

∂y
)

Conceptual Meaning: The curl is a measure of how much a vector “curls
around” a particular point.

Incidentally, the divergence of a curl is zero because if you look at the diagrams
above, you can see that something with only a curl around a point does not have
a divergence at that point.



2.2 Too Lazy to Read the Previous Section 9

2.2 Too Lazy to Read the Previous Section

OK. You don’t really have to understand del just yet. Working through the rest
of the material of the text should give you the same thing. For the time being,
just memorize the following relations and then flip onto the next modicum:

• ∇ = ∂
∂x

x̂ + ∂
∂y

ŷ + ∂
∂z

ẑ

• grad f = ∇f = x̂∂f
∂x

+ ŷ ∂f
∂y

+ ẑ∂f
∂z

• div ~f = ∇ ·~f = ∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z
See Footnote8

• curl ~f is as below

∇× ~f =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣∣ = x̂(
∂c

∂y
− ∂b

∂z
)− ŷ(

∂c

∂x
− ∂a

∂c
) + ẑ(

∂b

∂x
− ∂a

∂y
)

2.3 Misc. Tricks

2.3.1 Moving the Origin

You can move your origin anywhere, as long as you are consistent. For example,
suppose I want to find the distance from A to B:

A(5, 4) ; B(5, 10)

I can move the origin to either A or B. Suppose I move it to A. Then:

A(0, 0) ; B(0, 6)

Note that these are two equivalent systems as long as A and B are spaced
(0, 6) apart. It’s all relative.

This is an overtly simplified example of why you would want to move your
origin, and I don’t blame you for thinking me a total bore for tellng you this.
Anyway, you can easily create your own coordinate system this way. It’s all quite
cool.

Oh, also, you can create coordinate systems by redefining your axes. (And, I
guess if you’re of the “hardcore” math type, you would complain that moving the
origin isn’t really creating a new coordinate system. But anyway, I’m referring
to the pedestrian usage of coord sys.) Suppose you want to create a coordinate
system on the surface of a sphere, for example, then you would want to define
your axes accordingly to simplify the problems on the sphere. Se the next section
for details...

8note that fx denotes the x component of x, etc.
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2.3.2 Rotating the Coordinate System

Ya. So you know you can move the origin. Well, you can rotate your axes too.
See the ”Inclined Planes” subsection in Components earlier in this chapter.

2.3.3 Spherical Coordinates are Soooo Sexy!

Spherical coordinates (SC) may look formidable, if not frightening, but that’s
only if you let the explicit usage of various angles get to you. SC is actually quite
sexy, once you get to know it.

You can form two kinds of relationships with SC:

• The Shallow-Hal-Wannabe Kind- You memorize the following trans-
formations from your homebase Cartesian coordinate system to spherical
coord sys. This is what SC is; unless you’re a math major or taking an
upper div course in science, it’s really only this and nothing more:

– x = r sin θ cos φ

– y = r sin θ sin φ

– z = r cos θ

– where θ ∈ (0, π) and φ ∈ (0, 2π)

• The Meaningful Kind- You get to know who SC is. You have to form
a Shallow Relationship first, though, viz., what is SC? Then, you should
ask yourself: How did SC come to be? (SC’s roots and origins are in
Meaningful Projections.) You consider why anyone would bother finding
out how SC came to be and when you’ll need the sexy entity known as SC.
And finally, once you fully know SC, you can just forget everything above,
except the when part, and just start stalking SC That is, you should know
where SC is at any time (whether on the formulae sheet on your exam or
on the inside cover of your textbook, etc.) But, I warn you, the where-part
might become redundant, eventually, as through constant usage, you may
know SC so well, you’ll wind up memorizing SC. That’s a pivotal stage you
don’t reach in many other relationships; that just goes to show how much
cooler SC is than everything and everyone else.
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The above is what SC really looks like. It shows what the x, y, and z values
coorrespond to. There’s also the restriction for θ ∈ (0, π) and φ ∈ (0, 2π).
Slackers are oft too lazy and think that the angles go from 0 to 2π in both. Well,
that won’t work, because then you would be counting the ”height” twice. Think
of it like this: suppose you wanted to measure your own height, going from 0 to
π is like going from head to toe, if you assign your head the value θ = 0 and your
toes the value θ = π. If you went all the way to 2π, you would be counting your
height from head to toe plus your height from toe to head. There’ll be trouble
in your caboose!

That’s how SC came to be. SC can be very useful especially when you’re
working with spheres. Say, for example, you wanted to find the surface area of a
sphere the hardcore way via multiple integrals. You can tough it out via Cartesian
coordinates, or you can do it the easy way via a coordinate system designed
especially for such problems. (You can find this example in your Calculus book.)

If you’re confused at how I got the x,y,z correspondence, maybe you’ve for-
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gotten how to resolve a vector into components. (To wit: How did you solve
those incline plane probs from Mechanics?) Anyway, resolving a vector into com-
ponents is really just projecting it onto the axes of your choice. Usually, that’s
the x and y axes. If you know theta and the hypothenuse, life is good. The x
component would be just h cos θ while the y component would be h sin θ ... this
is providing that your angle is adjacent to the x axis. It’s the other way around
if it’s adjacent to the y axis.

The spherical unit vectors are pretty important. For LD, you don’t have to
necessarily coorespond them to their x, y, and z parts, but you should conceptu-
ally understand one of them: The r component protrudes in the radial direction;
it will always be pointing away from the origin in a sphere.

Incidentally, the spherical surface element da (where a is a vector normal to
the surface) can be constructured from a multiplicative mix of any two of the

below.

2.3.4 Cylindrical Coordinates!!!
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The Electrostatics Introduction

The reason why they have electromagnetic theory is basically to solve problems
involving charges; the reason why you have to take this course if you are a science
major or engineer is because it introduces you to one of the fundamental theories
that govern all of the modern technological world. The material you learn in
this course will probably seem pointless to you, as there are very few actually
practical “real-life” applications, but in order to truly understand how anything
involving electricity works, you need to know this stuff.

Although the Coulomb Force law looks a lot like the Gravitational Law from
Mechanics, the charges behave differently than people, or many ol’masses, for the
most part. There are certain explicitly defined rules in electromagnetism that
make charges and things a lot easier to predict, relative to people. Furthermore,
we know that the electrostatic field is always conservative. That’s not true for
many instances in real life; for example, there will always be air friction, etc.
Thus, you can simplify many-a-nasty integrals by knowing that any path from
A to B will be equal. Electricity and Magnetism is thus an easier course than
Mechanics, in my opinion. But, it’s more from this, than from what I said before:
if you know your mathematics, then the answers you want are practically given
to you via Maxwell’s Equations (below). If not, then this book will hopefully
beef up your (relevant) math skills so that, you, too, can ace EM without much
work.

For example, an ideal test charge Q isolated within its own universe will
produce an electric field of ~E = 1

4πε0

Q
r2 r̂. This will always be the case. Even if it

is Tuesday.
The laws of electromagnetism strictly define the behavior of charges. Thus,

unlike certain other branches of physics, electromagnetism is completely deter-
ministic. In the ideal world of textbook (and exam) problems, the 2 (of 4 total)
Maxwell equations summarize the life of every single electrostatic charge in the
universe:

∇ · ~E = ρ
ε0

and ∇× ~E = 0
The above are the relevant Maxwell’s equations for electrostatics - the state of
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non-moving charges. It’s also the state most first year undergraduate Electricity
and Magnetism course starts at.

The first equation states that the source of the field is in the charge. Rho is
the charge distribution.

The second equation states that the electrostatic field is conservative. There is
no such thing as ”electrostatic friction.” Thus, when you calculate the work done
to get from point A to point B, you get the same answer no matter that path you
choose (if you set up the line integral right!). Also, because the Electrostatic field
is conservative, E = −∇V , i.e., the Electric field can be defined as the negative
gradient of a potential. This will come in very handy when you’re asked to find
electric potentials, especially when you’re given the electric field.

If you know the Divergence Theorem (in the Math section), you can transform
the first equation into integral form like this:

Divergence Thrm:
∫ ∫ ∫

(∇ · ~E)dV =
∫ ∫ ~E · ~da You know that ∇ · ~E = ρ

ε0
=∫ ∫

~E· ~da

dV
You get the last part by solving for ∇ · ~E in the Divergence Thrm.

You can now leave out the ∇ · ~E, as you’re seeking an integral form, and
that’s the differential form. And, you can multiply the dV on the denominator
to simplify things on the right hand side. Thus, you get: ρdV

ε0
=

∫ ∫ ~E · ~da

Now, I’ll review the precise meaning of ρ. It is defined as the charge
unitvolume

= q
V

.
Then, q = ρdV Thus, you can simplify the right hand side into: q

ε0
The end result

is this: ∫ ∫
~E · ~da =

q

ε0

(3.1)

You now have Gauss’ Law in integral form. This is where all the fun shall
begin...
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Electrostatics

4.1 Gauss’ Law ∮
~E · d~a =

qin

ε0

(4.1)

Equation 4.1 is Gauss’ Law in integral form 1. The left side of the equation is
a scalar/dot product of two vectors; it corresponds to the scalar on the right side.

In words, it reads: The closed integral of the electric field ~E dotted with an area
element d~a (Electric Flux) is equal to the charge enclosed within (i.e.,“inside”)
the area element divided by the permittivity of free space: ε0

By closed integral, I mean the surface should “trap” the charge in question
within itself; it should not have a hole. Because the left side is a dot product, ~E
would be nonzero only where ~da is nonzero. (This relationship will always hold in
context of this Gauss’ Law equation, but it might not always work in other cases!)
The right side of the equation is the net charge enclosed within the area element
on the left side. In a sense, it’s kind of like a body-count. You can see the left
side as a warehouse-surface enclosing a quantum 2 amount of hostages. Oh, the
warehouse walls emanate a totally tell-tale Electric field. You’re actually some
FBI agent trying to negotiate with these criminals who dunno Electrostatics.
They claim that they have twenty q’s in there, but from the left side of the
equation, the surface of the warehouse, you easily see that they’re bluffing. Their
going-rate is $1,000,000/person - er charge. You scream at the top of your lungs
on your loudspeakers that they’re obviously bluffing (and electro-illiterate). They
only have 5 people - er, charges - in there, thus you will only pay a ransom of

1Maxwell’s Equations was stated previously terms of del’s, which is the differential form.
This integral form can be derived by using the Divergence Theorem.

2quantum refering to an integer amount... we’re not going to be too gruesome as to assume
the warehouse contains fractional amounts of people. Also, the quantum requirements is inter-
esting because real charge is always quantized... the continuous distribution questions are thus
really only approximations. They aren’t as ”precise” and ”godly” as the mathematics might
imply.
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$5,000,000. You just saved $15,000,000. Wow! Of course, real warehouses are
not as convenient as Gaussian surfaces ( ~da), at least not yet. And then, real
FBI agents would probably blast their way in with machine guns or napalms or
bazookas or teleportation devices and end up not paying anything...

If you’re pissed that I’m teaching you Gauss’ Law when your course is only
on “continuous charge distributions,” all I can say is bare with me... you just
might find Gauss’ slacker methods helpful in, at the very least, checking some of
your messy continuous charge things...

Gauss was probably one of the coolest slackers. This particular law of his
makes finding the Electric field of a sphere (anything with certain symmetery you
shall see quite soon), even those plastered with non-uniform charge distribution,
grotesquely easy. But, before I show you that, I’ll begin with its most fundamental
application:

4.1.1 Illumination from a Point Charge

• Example: Finding the Electric Field ~E a distance r away from a point
charge q.

Problem: Suppose you have a point charge q located out in the middle of
nowhere (like, really, it’s a vacuum, total free space, so you can use ε0). For

whatever reason, you need to find the ~E field at a distance r away from a
point charge.

Answer: You can do this two ways. You can get this directly from
the most basic form of Coulomb’s law. (to wit: ~E = qr̂

4πε0r2 ) or...

You can get this from Gauss’ Law, like so: ~E · (4πr2r̂) = q
ε0

The area element in this case would be the surface area of the sphere. This
is so because of the nature of the field lines. Like in the divergence diagrams
given in the Math-Nutshell chapter, the Electric field of this point charge
has great divergence. It’s been pre-determined that Electric field lines begin
in positive charges and end in negative charges.

Because there is no negative charge in sight from here until infinity (or the
end of our lil vacuum space), it looks like the field lines from q will have
no curl, but a huge divergence (it’s like light streaming out from the sun or
some dominant luminous entity) due to the fact that its original source (to
wit: q) is clearly identified.

The divergence will be only in the radial direction, as the change in field
intensity will be constant in all the other directions. The Electric field is
therefore zero in the other directions.

The radial direction is the one that is always perpendicular to the area
of the sphere that encloses the charge. Define the direction of the area
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element as the radial direction (think of it like this: for any infinitesimally
tiny patch on the sphere, the vector that is perpendicular to the surface
will always be pointing radially away).

Thus, the equation above reduces to this scalar: E(4πr2) = q
ε0

.

From this scalar equation, we can solve for E, and we get E = q
4πε0r2

We can direction-ize E, transforming it into ~E, by retracing our steps. We
defined ~da to be nonzero in only the radial direction/component, therefore
E is consequently zero in all other components (multiply the dot product

out!). Thus ~E = qr̂
4πε0r2

So, from the example above, we have a basic heuristic for solving Gauss’ Law
problems. And... It’s hella titeXD

To recap: ~E dot ~da contains only the components of ~E and ~da that are in
the same direction. The direction of the area element is thus taken as always
perpendicular to the actual surface. The surface element must enclose all of the
charge indicated on the right side of the equation. Once you’ve plugged in the
right values, you can solve for E. In general, it is good to always set up your
equation in the same format as Equation 4.1.

4.1.2 Multiple Charges and Electric Flux!

Further clarification: Suppose we have four charges, q1, q2, q3, and q4. This
time, we’re seeking the Electric flux in the region, that is: the fluxuation of the
electric field lines (Φ =

∮ ~E · ~da). So, formally, the problem goes like: Find the
electric flux in a sphere that spans all space of these four charges. Assume they’re
all in vacuum.

The first thing to do is to state Gauss’ Law in its most general form:∮ ~E · ~da = qin

ε0
(in general)

Then, you think a bit about what each of the variables above mean:
In this case, the charge enclosed would be all four of the charges. This is so

because the Gaussian surface spans all of space (at least relative to this particular
region). Therefore, there is no danger of leaving any one charge out! Because
we only need to find the electric flux, we can worry about just one side of the
equation and forget the rest. In this case, we’re too lazy to figure out the Electric
field, thus we’ll just do the right hand side.

Φ =
∮ ~E1 · (πr2r̂) = q1+q2+q3+q4

ε0

Thus Φ = q1+q2+q3+q4

ε0
and that’s the answer!

4.1.3 Sphere 0: Uniformly Distributed Surface Charge

We shall now begin the Trilogy of the Spheres. This is the Prologue. Like many
good fantasy trilogies, you have to read this to get the rest. So... Read this
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sub-section!
In another tone, the purpose of Gauss’ Law is to escape the nasty integrals of

the continuous-charge distribution questions. This example should prove it (at
least for one case):

Suppose charge q is uniformly distributed on the surface of a sphere of radius
R. (You can define σ = q

4πR2 as the surface charge density.) Find the Electric
field everywhere.

The left hand side of Gauss’ Law is trivial. It’s just E(4πr2) (look at the
interactive diagram for divergence available at http://slacker.yosunism.com - re-
member, the Electric field has extreme divergence from the center of the sphere,
thus the field is going in the same direction as the radius, always... so, we have
only the Er component multiplied by the dAr comp.) The other components
cancel because the field is only in the radial direction, thus θ̂ and φ̂ don’t mat-
ter. But then, if you define the vector area to be in the direction that is always
normal to the surface, then there wouldn’t be the other two components in the
first place.

The right hand side isn’t so bad, either. It’s just that you have to realize that
the field inside and the field outside will be different.

Inside the sphere (r < R), there is NO charge. Thus qin = 0. And, according
to Gauss’ Law, the field is thus 0 inside.

Outside, the problem reduces to that of a point charge. You have just q
/
ε0

on the right hand sand. ... I think you can take it from here. (If not, read the
previous section on Gauss’ Law.)

4.1.4 Sphere 1: Non-uniformly Distributed Surface
Charge

Suppose there is a wacky non-uniformly plastered charge distribution σ = 3b2,
where b is a function of θ and φ. This is stuck onto the surface of a sphere of
radius R. Find the electric field everywhere. You may express charge in terms of
an integral.

The left hand side of Gauss’ Law is trivial. It’s just E(4πr2) (remember, the
Electric field has extreme divergence from the center of the sphere, thus the field
is going in the same direction as the radius, always... so, we have only the Er

component multiplied by the dAr comp.) The other components cancel because
the field is only in the radial direction, thus θ̂ and φ̂ don’t matter, as. But then,
if you define the vector area to be in the direction that is always normal to the
surface, then there wouldn’t be the other two components in the first place.

Inside (r ≤ R), it’s 0, as there is charge only on the surface. No charge
enclosed always means the electric field is zero whenever Gauss’ Law is involved.

Outside: To solve for the right hand side, you’ll need to “think” in terms of
q.
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q =

2π∫
0

π∫
0

3b2R2 sin θdθdφ (4.2)

This relationship works because the surface charge density σ is defined as
charge

surfacearea
. Thus, you can solve for charge (in order to plug it into Gauss’ Law).

(Note that I’ve used the standard spherical surface element R2 (see the Math
section if you want to know how I got these), where R is constant in this case, as
it is on the surface of the sphere, where r = R exactly.)

You plug this into Gauss’ Law: E(4πr2) =

π∫
0

2π∫
0

3b2r2 sin θdθdφ

ε0
You solve for E. It’s still in the radial direction. Don’t worry about the

fact that theta and phi are involved. The dot product will come out 0 for the
components other than the radial one, anyway. But then, if you had that worry,
you still don’t understand the concept of vector area - it’s only the Gaussian
surface you have to worry about, and that stays the same for all these sphere
questions. The wacky charge distribution can really go to h - e - double hockey
sticks, for all that matters here.

4.1.5 Sphere 2: Uniformly Distributed Volume Charge

Sphere of radius R. Uniformly distributed volume charge density. Total charge is
q. Find ~E everywhere.

The left side of Gauss’ Law is trivial. It’s just E(4πr2) (remember, the Electric
field has extreme divergence from the center of the sphere, thus the field is going
in the same direction as the radius, always... so, we have only the Er component
multiplied by the dAr comp.) The other components cancel because the field is
only in the radial direction, thus θ̂ and φ̂ don’t matter, as. But then, if you define
the vector area to be in the direction that is always normal to the surface, then
there wouldn’t be the other two components in the first place.

For outside the sphere, the right side is trivial. The field reduces to that of a
point charge.

For inside the sphere, it’s a bit different...
The right side can be done with some stoiciometry:
We want to find qin given a uniform distribution.
Uniform distribution means the density is always constant: Thus

qin
4
3
πr3

=
q

4
3
πR3

(4.3)

The RIGHT side (in this case) is the density of total charge over total volume.
The left side is the density of the charge inclosed by the particular volume. Here,
r ≤ R. You’ll see that at r = R, the answer is the same as that for r > R.
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You solve for qin in the equation there, and you plug it into Gauss’ Law:
E(4πr2) = q

ε0
r3

R3 for r ≤ R, then E = q
4πε0

r
R3 . You want a direction for E? Well,

that should be trivial by now. It’s in the radial direction, so stick on a r̂ if it
makes u feel better.

4.1.6 Sphere 3: Non-uniformly Distributed Volume
Charge

Sphere of radius R with non-uniform volume charge density ρ = βr7. where β
is some constant. Find the electric field everywhere in terms of β, r, and the
fundamental constants.

You should be pretty used to this by now. Anyway, here goes:

Inside: q =
r∫
0

βr7r2 sin θdrdθdφ note that it’s 0 to r, where r can be any radius

number less than R. This is to indicate the volume within, of course.

Outside: q =
R∫
0

βr7r2 sin θdrdθdφ

And, the rest is just plugging it into Gauss’ law. I have used spherical coor-
dinates in this case, hence why there are r2 sin θ along with the differential’s.

4.1.7 Cylinders!

If you’re getting sick of spheres or getting way too excited over passing spherical
Gaussian surfaces, I have a treat for you!

Recall Gauss’ Law:
∮ ~E · d~a = qin

ε0
Then, visualize an infinitely long cylinder in your mind’s eye. Imagine that

the charge which produces the electric field has been ”stretched” so as to be
perfectly parallel to the cylinder’s longitudinal axis. Moreover, imagine that the
charge is concentrated at the exact center of the cylinder. Something like this:

The field would be radial all the time. It would have no other components.
Therefore, the surface element d~a must have a radial component... As we know
the field is obviously not zero.
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Recall the forumla for area: length × width Recall the formula for the surface
area of a cylinder: 2πrl where 2πr is the width (or actually, the circumference
of the circle - this is actually what you get when you make a cylinder out of any
flat piece of paper) and l is the length.

Thus: d~a = 2πrr̂l
Taking the dot product of the left side, you get E(2πrl)
The right side will vary depending on whether you have uniformly-distributed

surface charges, non-uniformly distributed surface charges, uniformly-distributed
volume charges, and non-uniformly distributed volume charges. The method for
chugging out the results for all those is similar to that for the Sphere Trilogy. I’ll
outline the few differences, you fill in the blanks from refering to the epic story
of the Sphere Trilogy a few pages ago.

For all these, assume the sphere is of radius R.
If the cylinder has non-uniformly distributed surface charge σ = b3, where b

might be some wacky function of θ and l (”height”): This is how you find the
charge inside. For outside, change the limit r to R.

qin =
∫ ∫

b3dA =
∫ 2π

0

r∫
0

b3rdrdθ (4.4)

where I have used the cylindrical area element.
If the cylinder has q uniformly distributed over its volume: ρ = charge

volume
Recall

that volume = base × height
Thus:

ρ =
qin

πr2l
=

q

πR2l
(4.5)

Solve for qin and plug.
If the cylinder has non-uniformly distributed volume charge ρ = β3, where β

might be a crazy function of anything. Find the Field produced by a segment of
length/height h. This is how you find the charge inside. For outside, change the
limit r to R.

qin =
∫ ∫ ∫

β3dV =

h∫
0

2π∫
0

r∫
0

β3rdrdθdl (4.6)

where I have used the cylindrical area element. Do the usual, and plug in qin

4.1.8 A Plain Ol’Infinite Plane

It goes on and on forever... Also, it’s infinitely thin.
The Gaussian surface can therefore be just two pieces of “flat paper.” Their

specific area is usually belittled by the mere mention of A. We’ll do that here,
too.

Recall Gauss’ Law:
∮ ~E · d~a = qin

ε0
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The dot product of the left side goes like: |E(above)A|+|E(below)A| = 2|E|A
(remember that A is the surface element perpendicular to the surface area, so it’s
just the normal to the plane. And, we’re taking the absolute value here, so it’s
additive rather than zero, as E will inevitably point in opposite directions above
and below.)

Now, this problem has some intimate ties with direction. For example, the
field will likely have a different value above and below the plane. Why? Well,
the normal vector (i.e., the direction of the area element) will vary above and
below. This also makes sense because, again, the field would originate from the
charge. (The vector would start pointing away out into vertical infinity from the
surface of the horizontal plane.) And the charge will have to be plastered either
uniformly or non-uniformly over the plane surface. (The latter case is extremely
unlikely to be a test prob, for now.) Thus, the only original source of the electric
field would be from the plane, hence its field direction vector’s “origin” there.

The right hand side is just qin

ε0
, where qin varies depending on yoru charge

distribution. The methods are similar. If you ever need to integrate, you can just
use Cartesian, which is natural for planes.

4.1.9 Conductors and Insulators

In electrostatics, charge in a conductor would be found only on the surface. Thus,
the only volume charge densities that are possible must be insulators. Insulators
don’t conduct; they’re the opposite of conductors. Therefore, they can’t carry
the charge around; thus, once you put a charge there, it pretty much stays there.
That’s why there are non-uniform volume densities in electrostatics, in the first
place. That’s basically it. You might have a quiz/test question that attempts to
trick you (and scare you) by saying, for example, “Find the field inside a spherical
conductor of radius R, plastered on the surface with total charge q.” Of course,
that’s just finding the field inside the surface-charge density problem; there is no
charge inside: the field inside is zero. The field outside reduces to that of a point
charge.

Anyway, in this case, you should be able to translate easily between the
qualitative and quantitative descriptions. Example: Qualitative Description of
spherical insulator with nonuniform charge means the quantitative non-uniform
volume charge density.

4.2 Too Lazy to Read All That About Gauss’

Law

Gauss’ Law in integral form is: ∮
~E · d~a =

qin

ε0

(4.7)
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That’s all there is to it. But, if you don’t know vector calculus very well, applying
it might be another thing.

Here’s the lowdown on application:

• Determine the origin/source of the field. That’s usually in a charge dis-
tribution of some sort. Remember the fact that the electric field diverges
positively from any positive charge. Because you know about dot products
from the math section of this lil ol’book, you can easily ignore the other
components of the area element ( ~da) that are not in the same direction as
the field. (To wit: otherwise, the Gauss’ Law equation would not hold)

• Take the area element that’s normal to the Gaussian surface (also repre-

sented by ~da). The Gaussian surface should be perfectly symmetrical to
the charge distribution.

• Find the amount of charge enclosed.

• Plug it all into the equation above. Solve for E. Find the direction of E by
thinking a bit about where it came from.

And, if you’re still confused, check out the previous section. Gauss’ Law is
one of those things that becomes more clear by examples, for most ppl.

4.3 Continuous Charge Distributions

These are actually pretty easy if you remember your calculus. Anyway, the trick
is this:

• Always remember your dear Coulomb’s Law. To wit: E = q
4πε0r2 .

• Know that dq = λdl = σda = ρdV . where λ = charge
length

and σ = charge
area

and

ρ = charge
volume

where all denominators are ”unit versions.”

• Know your spherical/cylindrical coordinate dV and da’s.

All of the results to be shown below can be verified with Gauss’ Law. (They
usually do it the other way, i.e., tell you to verify your Gauss’ Law results with
the equivalent but way more formidable and quite nasty continuous charge dis-
tribution calculations)
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4.3.1 The Skinny Line Charges

Find the electric field a distance z above the midpoint of a straight line segment
of length 2L, which carries a uniform line charge λ.

If you break this up into x and z components, you’ll find that the x component
cancels. (They’re going in opposite directions.) Therefore, only the z component
is nonzero. The electric field is thus only in the z direction.

d~E = 2
1

4πε0

λdx

rs
2

cos θẑ (4.8)

(The denominator r2
s should be a script r, indicating the shortest Euclidean

distance from the charge segment on the x axis to the arbitrary point P on the z
axis, but i can’t seem to TeX that.)

Note that q = λdx, therefore this takes the form of Coulomb’s Law. There is
a 2 in front of this to indicate that the z component is additive. That is, you add
the z component of the arrows on the left and right.

cos θ is actually the projection of the field onto the z axis. Because of the way
we have the integral set up, this projection is necessary to indicate the nature of
the electric field, which does not cancel only in the z component.
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cos θ =
z

rs

, wherers =
√

z2 + x2 from the Pythagorean Thrm. (4.9)

Thus, cos θ = z√
z2+x2 :

1. E =
1

4πε0

L∫
0

2λzdx

(z2 + x2)3/2
(4.10)

2. =
2λz

4πε0

x

z2
√

z2 + z2
(4.11)

3. =
1

4πε0

2λL

z
√

z2 + L2
(4.12)

1. Plugging everything back into the first equation. (4.13)

2. Factoring out the constants and integrating. (4.14)

3. Plugging in the limits and simplifying. (4.15)

This aims in the z direction. Thus, in vector form, it would be just: ~E =
1

4πε0
2λL

z
√

z2+L2 ẑ
That’s basically all there is to continuous distributions. To do others, you just

plug in different things for q and rs. Find a suitable set of integration parameters,
and it’s all good!

4.4 Potential

sdfdfssd sdfsdf



Chapter 5

The Magnetism Introduction

Magnetism is about moving charges. The basic problem in Magnetism is to solve
problems involving moving charges.

Electricity was just about plain ol’charges, not necessarily in motion. Any
charge produces an electric field that effects the other charges in the set. But,
the trick is magnetic fields exert forces on moving charges, and nothing else. (And
it looks like moving charges produce magnetic fields.)

But... Waiiiiitt a sec! What about magnets, like that prize-winning collection
sticking onto my refridgerator (outside)? They don’t seem to be moving... Fur-
thermore, they don’t even seem to be charges – like whenever I play with them
too much, my hair doesn’t turn into a decent Afro. They probably contain some
sort of magnetic field, as their stickin’-force seems to decrease the further away I
put two of ‘em together...

Good question. Your prize-winninge fridge magnet set actually contains mag-
netic fields on the microscopic atomic scale. There are tiny electrons flowing in
a certain direction, each producing a magnetic field purely due to their motion.
The field each produces all-together does not cancel out on the macroscopic scale,
thus manifesting a magnetic field. The teeny tiny fields are thus all aligned in
the same direction, thus magnetizing the matter.

For that matter, your prize-winning residue on the inside of your fridge prob-
ably also contains fields on the atomic level, but they probably all cancel out, by
moving in some wantonly random directions, so as to not stick to each other in
any other way except due to sheer non-field based stickiness. (Like most other
sticky things. Take that annoying piece of gum sticking to your shoe.)

So, what I should have said was this: All moving charges produce magnetic
fields, but because (most) things you can see without the aid of some hardcore
microscope are all composed of multiple moving charges, they might not be mag-
netic overall because their charges might be moving in totally random directions,
thus canceling out the fields on the wee bit teeny atomic level, way before you
can see its overall macroscopic effects.

That’s what Magnetism is about. Just nomad charges who don’t like staying
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in one place for too long. We’ll stalk them...
We’ll start with something they call Magnetostatics next. (Statics? But.. I

thought charges had to move to create magnetic fields...) You’ll see, soon enough.
If you did badly in the first part of your E and M course, have no fear!

Magnetism will be your redemption, basically because it’ll help beef you up for
the final - many of the calculations and stuff in Magnetism parallel the stuff done
in Electricity. This is your chance for fighting an enemy (magnetism)
whose every move you’ve seen before (in electricity)! Don’t let the
curve kill you, again. Instead, try killing the curve for a decent revenge.
XD

If you did well in the first part of your E and M course, this second part will
be like that special grape-flavored dashed with orange icing on the cake. It’ll be
sw33t!



Chapter 6

Magnetostatics

If you read the Intro to Magnetism, Magnetostatics might seem like a totally
bogus word. The only things that produce magnetic fields are moving charges, so
how can there be such a state as magneto-statics, which translates literally into
“non-moving magnetism.” ... Which seems to contradict itself.

Magnetostatics really refers to the state of currents that do not vary over
time. (So, the statics is with respect to time.) These currents have electric fields
that cancel out on a macroscopic level, because there is an approximately equal
amount of negative and positive charges. Furthermore, these currents are all
bound to the specific current line, and there are no free charges.

6.1 The Right Hand Rule

6.1.1 For Currents

Suppose there’s an infinitely long current right in front of you, coming out of
the ground, and going off into infinite space. The current is moving up towards
the depths of the heavens. If you were to try to clasp onto it with your right
hand. (Suppose you’re omnipotent, and you don’t get electrocuted, and you’re
still alive.) Now, your thumb is aligned (upwards) in the same direction as the
current. Your fingers are curled around it. That’s the only way you can clasp
onto an infinite line current.

Your fingers are curled in the direction of the magnetic field, while your thumb
points in the direction of the current. This is the Right Hand Rule for currents,
and it’s quite handy for determining the field direction for as long as you keep
your right hand.

Don’t you just love these “idealized situations?”
Now, this just might be a sign of obscentity in some eastern European hamlet,

so don’t go around waving at people with the right hand rule for currents when
you visit Europe... (cf. One side of the ”peace sign” is ”the finger” in the UK)
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6.1.2 For the Hermit Charge

Suppose the loner electron (or lone electron, if you’re the chemmy type) is zoom-
ing rightwards through a region with a uniform magnetic field pointing in the
direction coming out of the page, towards you.

Now electrons are the negative type of loners, so their charge value is negative.
The general force for such loner electrons goes like:

~F = −q~v × ~B (6.1)

Look at that short and lovely life line on the palm of the first figure in the
diagram. The heart line is relatively stable, while the head lines points towards
the life line. This is definitely the palm of a physicist. Your right hand stars in
both pictures.

Let your fingers point in the direction of the velocity of the charge, then
”move” your fingers by ”orienting” them in the direction of the magnetic field.
If you have a negative charge, the direction will be in the OPPOSITE direction
of your thumb.

Contrast the difference, when you have a positive charge. (The force just goes
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in the same direction as your thumb)

~F = q~v × ~B (6.2)

Check out the Right Hand Rule Interactive Animation on the website.
http://emslacker.yosunism.com

Meanwhile, here’s a static diagram in general for a positive charge. Note that
the force points towards the center, as in centripetal motion:

6.2 Ampere’s Law:

The Gauss’ Law of Magnetism

~B · ~dl = µ0Iin (6.3)

That’s Ampere’s Law. It’s good for currents that are constant with respect
to time. And, if you get vectors, there’s really nothing to it. ~B refers to the
magnetic field. ~dl refers to the Amperian path around the current. Note that dl
is used differently than used in the Biot-Savert Law.

The Amperian path, like its Gaussian surface analog for Electricity, is always
symmetrical to the thing producing it.

For example:
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6.2.1 That Proverbial Infinite Line of Current

Recall the right hand rule for infinite current lines. You grab onto it by pointing
your thumb in the direction of current flow, and hooking your (non-thumb) fingers
over in their natural position after the thumb’s been set. Your fingers curl in the
direction of the magnetic field.

This direction is also the direction of the Amperian path. The direction of
the Amperian path will determine the direction of the magnetic field. This goes
by the same reasoning I put up for Gauss’ Law. Because the left side of the
equation involves a dot product, you know that all other components except the
one that is in the direction of both dot product vectors should be zero. (Don’t
confuse yourself by looking into this problem in a way that’s too philosophically
profound here. It’s really just the equation that you should be worried about.)

The right hand side involves a scalar current value multiplied by the constant
of permeability for free space.

So, here’s the problem, as stated formally:
Find the magnetic field of an infinite line current I.
OK, so from the stuff above, we know the direction of the magnetic field. (To

wit: use the Right Hand Rule for Currents)
Because the current is cylindrical in the same way that an infinitely long thin

soup can would be, the natural Amperian path that goes in approximately the
same direction as your fingers would be a circle. The length of this Amperian
path is 2πr, which is the same as the circumference of a circle. The field is
pointing in the φ direction, where φ goes from 0 to 2π.

Recall Ampere’s Law: ~B · ~dl = µ0Iin

So, on the left hand side, you get: ~B · 2πrφ̂ Dot them together, and you get
B(2πr)

On the right hand side, you just get the default: µ0I

You then solve for B. You get: ~B = µ0Iφ̂
2πr
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6.2.2 Current Distributions

There’s the volume current distribution: J ≡ I
A⊥

And then there’s also the surface current distribution: K ≡ I
l⊥

Notice that I’ve placed a ⊥ subscript by both the Area and the length. This
means that I want the area component that is perpendicular to the flow. Check
out the pic:

6.2.3 The Fat Arse Infinite Line Current

Just like how evil professors can make you do evil integrals to find the charge
enclosed for Gauss’ Law, they can do the same for currents in Ampere’s Law.
Like in Gauss’ Law, the left hand side is dependent only on the geometry of the
system. Thus, no matter what wacky current distribution you have, as long as
it’s along a right cylindrical wire, the left hand side will be the same as that
shown above.

Given a volume current distribution, the right hand side can be determined
by:

I =
∫

Jda⊥ (6.4)

where da is the area perpendicular to the current flow.
Similarly, given a surface current distribution, the right hand side can be

determined by:

I =
∫

Kdl⊥ (6.5)

where dl is the length perpendicular to the current flow.
Anyway, here’s a sample problem: Find the ~B everywhere produced by

a volume current density J = kr distributed in an infinitely long “thick
arse wire” of radius R.
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For r < R, that is, within the “thick arse wire”, we can start with the right

hand side: I =
r∫
0

2π∫
0

kr(rdφdr) = k r3

3
2π

Note the usage of polar coordinates, which is appropriate for integrating cross
sections involving circles.

You use what we found above for the left hand side for Ampere’s law: B(2πr)
Then, you set it equal to each other according to Ampere’s law: B(2πr) =

µ0k
r3

3
2π

Then, you solve for B... You get: B = µ0k
r2

3
φ The current is going in the

z direction in cylindrical coordinates, or in other words, away from you. Thus,
your magnetic field would be in the φ direction.

For r > R, that is outside the “thick arse wire”, we can start with the right

hand side, again: I =
R∫
0

2π∫
0

kr(rdφdr) = kR3

3
2π

Note that the top limit ends at the radius of the circle, basically because
the problem defines current to be flowing only within this infinitely long right
cylindrical thing.

You use what we found above for the left hand side for Ampere’s law: B(2πr)
Then, you set it equal to each other according to Ampere’s law: B(2πr) =

µ0k
R3

3
2π

Then, you solve for B... You get: B = µ0k
R3

3r
φ The current is going in the

z direction in cylindrical coordinates, or in other words, away from you. Thus,
your magnetic field would be in the φ direction.

Here’s another problem: Same thing as above, except with uniform volume
current. Total current is I. Radius is R.

The field on the outside is trivial; it’s the same as that for a thin wire.
The field on the inside can be done in pretty much the same way we found

that for uniform volume charges back in Electricity:
We use a bit of dimensional analysis, and we get: Iin

πr2 = I
πR2 = J Solve for

Iin, and ta-da, plug into Ampere’s law, and you get this: B = µ0I
R2r
2π

;



Appendix A

Appendix 1

A.1 Components:

Breaking Up the Multidimensional

Components may seem imposing, but that’s only if you let them be. They let
you shatter seemingly complex two or three dimensional problems into some one
dimensional common sense. In a way, components are actually like the x and y
coordinates, you have when, for example, you plot (4, 6). It’s actually something
you’ve seen a gazillion times before disguised in a seemingly scary form.

If you don’t understand components, that’s probably because you don’t quite
get the trig. Thus, this section will start with “the trig.”

If you can solve the following problem fairly easily and are reasonably good
with basic inclined plane problems, then you should skip this whole component,
er, section.

Suppose plane A were inclined at an angle of α from the absolutely flat ground.
Then, suppose that plane B were inclined at an angle of α on or with respect
to plane A. In other words, the two planes form alternate interior angles, and
they’re flat with respect to the same ground. Plane B is “growing” out of plane
A; the side of the triangle denoting plane B has one angle α and another right
angle (90 degrees). Given the fact that the hypotenuse of the triangle formed
by plane B is h, find the horizontal and vertical components with respect to the
variables h, and α. The format of this question should remind you of an old
friend from mechanics...

The answer to this problem, along with a nifty diagram is available later in
this section. In order to skip it without fear that you’ll miss too much, you need
to solve this problem correctly... NOW. Otherwise, my dear reader, please read
on and ignore this problem until the right time comes.
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A.1.1 Conquering the Trig

To begin mathematics, mathematicians had to define things. That’s more or less
why the three basic trig ratios (sin, cos, and tan) are known as what they are.

sin α ≡ opposite

hypothenuse
(A.1)

cos α ≡ adjacent

hypothenuse
(A.2)

tan α ≡ opposite

adjacent
(A.3)

The opposite side, in this case, would be the vertical side. The adjacent side,
in this case, would be the horizontal side. The opposite/adjacent demarcations
are with respect to the angle alpha (α).

But, you have to note something weird here. If I were to have β as the angle,
the following would be true: The opposite side would be the horizontal side,
while the adjacent the vertical side. Why? The side that is adjacent (touching)
to the angle beta (β) is the vertical side, and so on. Thus, it is important that
you remember the general rules defined above, rather than assuming that cosines
always involve the horizontal divided by the hypothenuse.

You can remember this by the nifty mneumonics to follow:

• When asked whether he would repent his sins, Galileo tried to avoid answer-
ing the question via the following historic quote: “OH, SIN.... AH–’COS
.... TAN Ohh.. Ahh..” (where the O in OH stands for Opposite, while the
H stands for Hypotenuse, etc.)

• With every HYPe, there’s an OP for SIN, COS of an AD potraying OP-
portunities and ADventures with some crazy TAN people.

• There’s always the old SOA-CAH-TOA, if you like that one better.
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A.1.2 Facing the Components

In a way, components are actually like the x and y coordinates, you have
when, for example, you plot (3, 4). The x component is 3, while the y component
is 4. You would get a triangle if you were to draw a straight line from the origin
to the point, letting the x and y axes become the other two sides. You would use
the Pythagorean Theorem h =

√
a2 + b2 to find the length of the slanted part of

the triangle.
In this case, the length of the slanted part - or the hypotenuse - would be

h =
√

32 + 42 = 5
Now that you know the hypothenuse, you can easily find the components in

terms of the angle α.
Recall the definition for sin and cos from the previous page.
sin α ≡ opposite

hypothenuse
and cos α ≡ adjacent

hypothenuse

Relative to the diagram above, sin and cos can be represented as:
sin α = y

h
and cos α = x

h

To solve for y or x, you would just multiply both sides by h:
y = h sin α and x = h cos α
You can solve for alpha by pluging in the x and y and h values for this

particular point:
4 = 5 sin α ⇒ α = arcsin 4/5 and3 = 5 cos α ⇒ α = arccos 3/5
Thus, alpha is approximately 53.13 degrees, if you type in the expression

above into your calculator.
This is basically all there is breaking up a multidimensional thing into com-

ponents. You have to do it with respect to the right angle and hypothenuse. This
can be done in three dimensions, too, but there will likely be more than one angle
you’ll have to plug into the sin’s and cos’s.

A.1.3 Components on Inclined Planes

Here’s that problem I promised to solve earlier:
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To requote:
Suppose plane A were inclined at an angle of α from the absolutely flat ground.

Then, suppose that plane B were inclined at an angle of α on or with respect
to plane A. In other words, the two planes form alternate interior angles, and
they’re flat with respect to the same ground. Plane B is “growing” out of plane
A; the side of the triangle denoting plane B has one angle α and another right
angle (90 degrees). Given the fact that the hypotenuse of the triangle formed
by plane B is h, find its horizontal and vertical components with respect to the
variables h, and α. The format of this question should remind you of an old
friend from mechanics...

We know that that that particular angle on the other triangle is also α because
alternate internal angles are equal (geometry)... And, we know they’re both right
triangles. Thus, β = 90− α

Now, we apply our trig rules. the ”horizontal” (parallel to hypothenuse of
black triangle) part of triangle B (the red one) would be h sin β, while the vertical
part (normal to hypothenuse of black triangle) would be h cos β.

You’ve just flipped over your coordinate system to be inclined-plane friendly.
Your normal force and your frictional force are now naturally represented! Well,
we’re assuming the force is applied along the hypothenuse of the red triangle...


